Hierarchy and structure in academic and romantic markets prestige, diversity \& inequality

Daniel Larremore
University of Colorado Boulder

faculty shape the academic ecosystem

- make discoveries [science \& scholarship]
- teach courses [education]
- train students [research ecosystem \& workforce]
- communicate science [media \& public]
- advocate for research priorities [policy]

questions

1. faculty production: where do U.S. faculty come from, and are doctoral origins changing?
2. placement and prestige: does doctoral institution affect employment? is hiring hierarchical?
3. representation of women: is academia heading towards gender parity?

ten years of comprehensive faculty data

- complete tenure-track faculty rosters
- 10 years (2011-2020) of rosters, collected annually
- all PhD-granting US universities
- all departments, clustered into 107 fields and 8 domains
- each professor's PhD* institution \& year
in total: 295,089 faculty in 10,612 departments at 368 universities.
where do U.S.-trained faculty come from?

Where do U.S.-trained faculty come from?

where do U.S.-trained faculty come from?

did inequalities change from 2011-2020?

- Academia
- Applied sciences
- Education
- Engineering
- Humanities
- Mathematics and computing
- Medicine and health
- Natural sciences
\square Social sciences
G are all large across domains.
they do not appear to be growing or
shrinking over the decade 2011-2020.

did inequalities change from 2011-2020?

- Academia

Applied sciences
Education
Engineering

- Humanities
\square Mathematics and
computing
- Medicine and health
- Natural sciences
- Social sciences
in every field, domain, and overall, faculty production inequality is lower for new faculty, and higher for sitting faculty!
what might explain these patterns?

driver: differential attrition risk by PhD origin

this means that there's substantial inequality in faculty hiring and that this inequality is then exacerbated by attrition.

Academia

- Applied sciences
- Education

Engineering

- Humanities
- Mathematics and computing
Medicine and health
- Natural sciences
- Social sciences
this process makes cohorts less diverse by doctoral origin as they age.

faculty hiring networks

premises:

1. each hiring committee wants to hire the best.
2. each hire $u \rightarrow v$ is an endorsement of u by v.
3. network reveals collective mutual endorsements.
a recursive notion of prestige:
one becomes prestigious when one is endorsed by someone prestigious.

infer prestige scores directly from the structural patterns in faculty hiring networks. [SpringRank - cf. RUMs \& Discrete Choice]

\downarrow

convert prestige scores to ranks/percentiles.

faculty hiring networks

low upward mobility

$5 \% \uparrow$ Classics
6\% \uparrow Econ, Finance
7\%个 Art History, Stats
12\% \uparrow CS, Epidemiology
18\% \uparrow Academia
20\% \uparrow Horticulture
$21 \% \uparrow$ Agronomy, Entomology 23\%个 Animal Sci, Pathology
average hire moves down by
$\downarrow 28 \%$ Econ
$\downarrow 22 \%$ CS
$\downarrow 18 \%$ Academia
$\downarrow 14 \%$ Agronomy
of each field-specific prestige ranking

women's representation in the academy

Academia

- Applied sciences
- Education
- Engineering
- Humanities
- Mathematics and computing
Medicine and health
- Natural sciences
\square Social sciences
> women's representation among new faculty increased from 2011-2020 overall, in 3/8 domains, and in 15/107 fields (14\%)

Academia

- Applied sciences
- Education

Engineering

- Humanities
- Mathematics and computing
Medicine and health
- Natural sciences
- Social sciences
new hires remain predominantly men in 75 of 107 fields, particularly in STEM
women's representation among new faculty increased from 2011-2020 overall, in 3/8 domains, and in 15/107 fields (14\%)
without continued efforts toward parity in hiring, the changes in women's overall representation from 2011-2020 will soon plateau in many domains.

new hires remain predominantly men in 75 of 107 fields, particularly in STEM
women's representation among new faculty increased from 2011-2020 overall, in 3/8 domains, and in 15/107 fields (14\%)

summary

1. faculty production: a minority of institutions produce the majority of U.S. faculty; attrition exacerbates these inequalities.
2. placement and prestige: hiring follows a steep hierarchy at all levels of academia; most faculty work at an institution that is less prestigious than where they earned their doctorate
3. representation of women: the share of women in academia is increasing, but slowly and unevenly; without further intervention, progress is likely to stall in most STEM fields

explore: Larremore Lab.github.io/us-faculty

how has dating been studied?

social scientists have long been interested in

- who partners with whom
- why people enter/stay in partnerships
- how current patterns in partnering affect those in the future
the theoretical foundation for most of these studies is the idea that mate pursuit unfolds in a market:
"since men and women compete as they seek mates, a market in marriages can be presumed to exist. Each person tries to find the best mate, subject to the restrictions imposed by market conditions."

how do market conditions impose restrictions?

you can't "just choose" to partner with the person you like best they might have other suitors, or different preferences.
you can only partner with the person you want if they prefer you over all of their other suitors - only if you successfully beat out the competition.
a suitor can only partner after succeeding in one of the
competitions that result from their preferences and opportunities

assortative mating results from competition

why hasn't competition been studied?

lack of data: studying competition requires information on everyone in a romantic market and all overtures they made. Such data are only recently available on a large scale (i.e., through online dating).
lack of methodology: competition isn't directly observable in the data from online dating sites (i.e., who pursues whom). Studying it requires a method of transforming those data into games that reveals the competitions.
today I'll present a framework for studying competition and apply it to an online dating market in New York City

questions

1. competition \& popularity: are the most competitive people on the dating site also the most popular?
2. who competes with whom: do suitors who pursue similar partners also compete with people who look like them?
3. competition stiffness \& selectivity: which demographic groups face the "stiffest" competitions (i.e., has the most competitors) and why?

data from popular, free dating site

- straight singles, $18-65$, in New York Metro Area, active on dating site between January - March 2014
- 40.7 k men and 36.5 k women looking for romantic union
- 76% white, 82% college educated, average age $=33$

messaging data
- who contacts whom
- who replies to whom

profile data
- user demographics (race, age, education)

from messages to games to competitiveness

messaging data

first message	got reply?
$\mathbf{x} \rightarrow \mathbf{a}$	yes
$\mathbf{y} \rightarrow \mathbf{a}$	no
$\mathbf{z} \rightarrow \mathbf{a}$	no
$\mathbf{x} \rightarrow \mathbf{b}$	no
$\mathbf{y} \rightarrow \mathbf{b}$	no
$\mathbf{v} \rightarrow \mathbf{b}$	yes
$\mathbf{w} \rightarrow \mathbf{b}$	yes
$\mathbf{y} \rightarrow \mathbf{c}$	yes
$\mathbf{z} \rightarrow \mathbf{c}$	no

messaging data have been used to study mate preferences \& construct desirability rankings*
heterosexual messaging data connect men to women \& women to men...
...but what if we looked at messaging data in the way people study tournaments and games?

from messages to games to competitiveness

messaging data

games

first message	got reply?
$\mathbf{x} \rightarrow \mathbf{a}$	yes
$\mathbf{y} \rightarrow \mathbf{a}$	no
$\mathbf{z} \rightarrow \mathbf{a}$	no
$\mathbf{x} \rightarrow \mathbf{b}$	no
$\mathbf{y} \rightarrow \mathbf{b}$	no
$\mathbf{v} \rightarrow \mathbf{b}$	yes
$\mathbf{w} \rightarrow \mathbf{b}$	yes
$\mathbf{y} \rightarrow \mathbf{c}$	yes
$\mathbf{z} \rightarrow \mathbf{c}$	no

a suitor wins when an arbiter replies to them, but not to someone else
when a suitor makes an overture
to an arbiter, they enter a game
the arbiter's decision to ignore or reply determines
the suitor's outcome in the game

from messages to games to competitiveness

messaging data

games

win:loss graph

first message	got reply?
$\mathbf{x} \rightarrow \mathbf{a}$	yes
$\mathbf{y} \rightarrow \mathbf{a}$	no
$\mathbf{z} \rightarrow \mathbf{a}$	no
$\mathbf{x} \rightarrow \mathbf{b}$	no
$\mathbf{y} \rightarrow \mathbf{b}$	no
$\mathbf{v} \rightarrow \mathbf{b}$	yes
$\mathbf{w} \rightarrow \mathbf{b}$	yes
$\mathbf{y} \rightarrow \mathbf{c}$	yes
$\mathbf{z} \rightarrow \mathbf{c}$	no

a suitor wins when an arbiter replies to them, but not to someone else
they lose when an arbiter replies to someone else, but not to them
a suitor with a high win:loss ratio is competitive

competition through the lens of race

- plays outsized role in shaping people's partner choices, overriding factors such as education
- is the primary focus of previous research on partner preferences, especially those using online dating data*
- is one of the few remaining areas where people openly express racial preferences

[^0]Q1: are the most competitive suitors also the most popular?
A1: not really.

competitiveness \neq popularity

popularity is consistent with previous findings about preference hierarchies.

do popularity and win:loss agree?

do popularity and win:loss agree? for white suitors, yes

they win and lose in proportion to their popularity.

do popularity and win:loss agree?
 for non-white men and women, no

non-white men and black women are more competitive than popular asian and latina women are less competitive than popular

what's going on here?

lesson: friendship has benefits

competitiveness isn't about attractiveness. it doesn't matter how attractive everyone else thinks you are when you pursue people who disagree.
competitiveness is about getting replies. suitors are most likely to receive replies from arbiters of the same race, so the more often a suitor pursues arbiters of the same race, the more competitive they will typically be.

Q2: who competes with whom?

homophily dominates preferences

FEMALE SENDING PATTERN
Receiving Group

MALE SENDING PATTERN
Receiving Group

[^1]
but everyone mostly competes with white competitors...

men

women

how is this possible? follow the messages.
let's focus on asian men, who have a strong preference for asian women.

asian men's

 outboxesIow probability of writing X
large population at risk of being written to
=
large inflow of messages

women's

 inboxes
white women get

- 10\% of their overtures from latino men
- 78% of their overtures from white men
asian women get
- 24% of their overtures
from asian men
- 59% of their overtures from white men
asian men make up only 6% of men on site, so their overtures make up a relatively small fraction of even asian women's inboxes.

preferences that affect pursuit are diluted in competition

B

both positive and negative preferences are diluted.

lesson: preference dilution

homophilous messaging doesn't necessarily lead to homophilous competition when the majority of the population comes from one demographic.
we can't understand segregation patterns by only looking at preferences due to this dilution effect.

Q3: who faces the stiffest competitions?

when a suitor pursues an arbiter, the stiffness of that competition is the count of other suitors in pursuit.
the more desirable the arbiter, the stiffer the competition.

suitors who enter stiffer competitions are more selective

Strange. Wouldn't we expect most competitive suitors to be in biggest competitions?

selectivity depends on who you are pursuing

asian

latinx

white

relative selectivity $=$ stiffness when you pursue arbiters of some race - stiffness when others do

suitors are least selective when pursuing their own race

there is a homophily bonus

suitors are often more selective when pursuing other races

there is a heterogeny tax
suitors are often more selective when pursuing other races

non-white suitors are most selective when pursuing white arbiters

suitors are often more selective when pursuing other races

asian

black

latinx

white

lesson: social distance is costly

homophily bonus: people evaluate partners who are socially close to them more generously than others do.
heterogeny tax: people evaluate partners who are socially distant from them less generously than others do.

The greater the social distance between suitor and arbiter, the more attractive an arbiter must to be for the suitor to pursue them.

The higher the cost of overcoming social boundaries, the higher the suitor's standards.

beyond status exchange

old idea: people less desirable in one attribute "compensate" with another
e.g., old but rich men pursue
beautiful but poor women
new idea: social distance imposes a cost regardless of suitors' own attractiveness
e.g., black women pursue white men
only if they are attractive and educated

summary

1. competition \& popularity: suitors don't need to be desirable to be competitive, as long as they pursue arbiters who are likely to reply
2. who competes with whom: preferences have a large impact on who suitors pursue, but a diluted affect on their competition; everyone is most likely to compete with white suitors
3. competition stiffness \& selectivity: suitors are less selective than their peers when pursuing arbiters of their own race, and they are typically more selective than their peers when pursing arbiters of other races

reflections and future work

- my work on academic markets used placement data
- my work on romantic markets used application data
but we really want both types of data in both cases, because then we could ask...

in the academic market:

- do men and women apply similarly?
- do their applications succeed at similar rates?
- are there field-or institution-level variations?
in romantic markets:
- does homophily increase as pursuit proceeds?
- do market experiences (like desirability or competitiveness) affect partnership outcomes?

Thank you to these fantastic people

Dan Larremore

Ian van Buskirk

Aaron Clauset

Katie Spoon

Elizabeth Bruch

Allison Morgan

Sam Zhang

Sam F Way

Nick LaBerge

everyone in the
Larremore and Clauset labs

Hunter Wapman

PhD Candidate
Department of Computer Science hunter.wapman@colorado.edu hne.golf
inerva
RESEARCH initiative

University of Colorado Boulder

[^0]: note: I'll be using words like "desired, popular, attractive" in their literal sense to make statements about the data and patterns therein - not to pass judgements, or make generalizations, or as any kind of assertion about worth/value.

[^1]: darker = more likely to pursue

